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ABSTRACT 

We consider string theories with gauge group EgXEg’ compactified on 
Calabi-Yau manifolds so that the unified gauge group is E#Eg’. If the 
fermion content is Nr27 + 6(27 +m), where 6=1 or 2, and the Eg is 
broken by Wilson loops to a gauge group C (which contains 
SU(3), x SLJ(~)L x U(l)y), then x is specified almost uniquely if we 
require that neither the up nor the down quark mass matrices are identically 
zero at tree level and that the Higgs doubIets arise via the incomplete 
multiplet mechanism. In particular, X must be rank 6. However, if we wish 
for the neutral mass matrix to be acceptable, we must have the electron mass 
matrix identically zero at tree level. We comment on a way to possibly have 
small (but non-zero) neutrino masses in superstring models. 
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The EgxEg' heterotic superstring theory [l] seems to be the most 

phenomenologically promising of the possible anomaly free [2] superstring 

theories. The requirement that there be a low energy N=l supersymmetry is 

achieved by compactifying the original lo-dimensional E8xEg’ theory on a 

manifold M4 xK where K is a six dimensional Calabi-Yau manifold* [3,4]. 

This is a K5hler manifold with SU(3) holonomy. In the course of doing this 

the SU(3) gauge vector field in E&jXsu(3) is set equal to the spin 

connection of K in such a way as to explicitly break Eg to E6. The low 

energy representations appear as zero modes on K, and are neutral under the 

other Eg’. If K is chosen as a simply connected manifold, K,,, then, aside 

from the gravity and gauge multiplets, there are chiral multiplets that 

comprise an Nf 27 + S(27 + m) of E6. The number of families Nf is 

determined by the topology of K,, and is given by [3], Nf = ]~(Ks,)/2], 

where x(K,,) is the Euler characteristic of K,,. The number 6 is also 

determined topologically and is given by the Hodge number bl,l. Ktihler 

manifolds always have bl,l>l. In this paper we will mainly specialize to 

bl,l=l except for some comments at the end where we note that in the case 

bl,t=2 our analysis applies almost identically. 

The zero modes do not have the proper multiplet structure to act as 

Higgs to break E6 all the way down to SU(3)cXU( l)EM, hence another 

mechanism must be employed. Such a mechanism exists if K is not simply 

connected [6,7]. We consider a non-simply connected space which can be 

written as K = K&G, where G is a discrete group that acts on K,, freely 

“This is true if the added requirement that K be torsion free is imposed. Our 
results would concievably be different if this were not so [5]. 
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(that is, without fixed points, unless the group element in question is the 

identity). The space K,,/G is formed from the space K,, by identifying the 

points x and gx on K,,, where ge G. Most examples that have been 

considered thus far have been of this form [3,8]. On this space there may be 

non-trivial Eg gauge field configurations which, while they cannot be gauge 

transformed to zero, nonetheless have Fnv=O. The possible presence of these 

gauge fields can break E6 explicitly by virtue of their contribution to a 

Wilson loop (which, after all, exhibits gauge invariant information contained 

in the vacuum value of the Eg gauge field). Such a Wilson loop is given by 

U,=P exp[ &A,dxm], where the integration is over a non-contractible 

loop, r, in K. Since the group G is finite it follows that U,*=l for some 

integer n. For each element gs G there is exactly one U, in Eg (which may be 

the identity). The Wilson loops thus provide a homomorphism of G onto a 

discrete subgroup,??, of Eg which is represented by the U,. These matrices 

act similarly to the vacuum values of adjoint Higgs and break Eg. 

When passing from K,, to K the value of Nf changes to 

Nf’=]x(K)I2] =]x(K,,)/(2 dim(G))], but the fields no longer comprise 27’s of 

Eg, since Eg has been broken to a subgroup* 1. The number of degrees of 

freedom comprising left handed families is nonetheless 27]~(K)/2] [3,7], each 

family falling into a reducible representation, R, of C. Of the zero mode 

degrees of freedom appearing on K,, only certain of them survive to remain 

in the spectrum when we make the mathematical transition from K,, to K [7]. 

If Y(X) is a field on K,, (possibly with E6 indices) then as Y is transported 

from x to x+dx, Y will change by a gauge transform [9]: 

Y(x)+exp[-i A,dxm]Y(x+dx). As we move from the point x to the point gx 

on KS,, we pick up the full factor U,t; however, for Y(X) to also be a mode 

*C is, of course, required to contain SU(3),xSU(2)~xU(l)y. 
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on K, the result of transporting from x to gx must equal Y(X). Thus, we must 

have Y(x)=UgtY(gx). In the case where 6=1 we can easily answer the 

following question [7]: Which components of the 5 are in the spectrum on 

K? Since* for this 3, ‘Y(x)=Y(gx), the requirement that a component of the 

2’be in the spectrum on K is that it be invariant under U, for all gs G. 

These modes will fall into a (generally) reducible representation 7 of C. 

Thus the zero mode representation content of the theory is [7] (aside from 

gravitational and gauge modes) N/R +(r+T). These “incomplete multiplets” 

(r+?;) have been suggested as candidates for the Higgs multiplets** that break 

c t0 SU(S)cXU(l)EM [7,11,12]. We adopt this View in this paper and explore 

some of its consequences. In the following we will impose the condition that 

both the up and down quark mass matrices are not identically zero at tree 

level. From this we determine that the subgroup C of E6 left unbroken by 

the Wilson loops is almost uniquely determined and that the group ?? is 

restricted to be Za (in particular,E cannot be non-abelian). 

We first consider the case in whichE is abelian (and thus C is rank 6). 

The smallest group that c can be is 

SU(3)c x Sum x U( 1)s~ x U(1)3R x U( 1)s~ where the labels on the 

U( 1) factors refer to the diagonal generators fo E6 as expressed in the 

maximal embedding E&U(3), x SU(S)L x SU(3)R. Under 

EpSU(3), x sum x u(1)& x U(1)3R x U(l)gR the 27 of E6 

decomposes as 

“This is a property of Calabi-Yau spaces in which bl,l=l. It is related to the 
fact that the Ktihler form is invariant under x-tgx [lo]. 
**This presumes discrete symmetries that distinguish these Higgs multiplets 
from the other multiplets in the spectrum that have the same quantum 
numbers under c. Such symmetries are probably needed to keep the proton 
from decaying too fast [7]. They depend upon the manifold K,, and the 
group G [7]. Each case must be treated separately (and with respect!). 
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27 = A1(1,2,-l,l,l) + B-1(1,2,-1,-l,l) + C-1(1,2,-1,0,-2) 

+ Dz(1,1,2,1,1) + E0(1,1,2,-1,l) + F0(1,1,2,0,-2) 

+ G1/3(%&1,0,0) + H-2/3(3,1,-2,0,0) + I-~&1,0;1;1) 

+ J2~3(~,1,0,1,-1) + K2&,0,0,2) 

where the subscripts denote the weak hypercharges of the respective 

components. 

From the weak hypercharges we can determine which components of 

the superfield, 27, contain which fermions: Thus, the superfield G1,3 is 

[u,d IL, I.413 is URC, H-213 is DL (the D is sometimes also refered to as g*), D2 

is eRC , and Al is [E , N]R~. There is an ambiguity at this stage for 5213 and 

K2/3, and for B-1 and C-1 depending upon mixings between “light” and 

“heavy” fields in the mass matrices. Both 3213 and K2,3 are candidate dRC and 

DRC. Similarly, B-1 and C-1 are candidate (v,e)L and (N,E)L. Eo and FO are 

neutral singlets (candidate VRC and NRC). 

As a consequence of this, the Higgs supermultiplet that gives rise to an 

up quark mass matrix must transform as the conjugate of 

C+,3 I-413 - (1,2,1,-1,-l). Thus, the superpotential coupling giving rise to an 

M, would be G1/3 I-413 xl, where the tilde denotes a Higgs. For the down 

quark mass matrix there are two choices. Case I: G1/3 5213 - (1,2,1,1,-l) 

where Md arises from G1,3 5213 E-1. Case II: G1,3 K2,3 - (1,2,1,0,2) where 

Md arises from G1,3 K2,3 E 1. 

We parameterize the matrix Ug as 

ra 1 rps 1 
U,=lx I cx Ix I ps-1 I 

L a-2 _I L p-2 1 

“In ref. [13], for example. 
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in the SU(3), x Sum x SU(3)R basis. In case I we wish for xl and s-1 to 

be invariant under Us; and, in case II we want x1 and E-1 to be invariant (we 

will see later that the case in which all three xl, E-1 and E-1 are invariant 

leads to unbroken SU(3), x Sum x SU(3)R). Under U,: 

x1 -3 a-up & ; 
‘ii-1 + a-wp E-1 ; 

Eo -3 a%-’ p $ ; T-4,3 -3 6-l p-G-4,3 ; 

c-1 
$0 + c43-2 g-j ; 

+a-y3-2E-~; &3+&3; 
72,3 + sp-’ 7213 ; 

D2 + c&p 82 ; fi-213 --f a-2 iC2,3 . 
z2,3 + P2 g2,3 ; 

Thus, in case I we require that a-iGfi =l and a-16-ip =l. In case II we require 

that a-?$3 =1 and a-‘p-2 =l. Hence, we find: 

case I: 
ra 1 ra 1 

U,=lx I Q Ix I CL I 
L a-2 J L a-2 J 

case II: 
h 1 ra 1 

U,=lxIa 1x1 a-2 1 
L a-2 J L a J 

In each case the requirement that ??I and only one of “B-1 or”c.1 are in the 

spectrum requires that a3 z 1. The only other fields that are in the spectrum 

are & in case I and & in case II. 

From the forms of the matrices for case I and case II we see that ?? is 

restricted to G = Z, , n 2 4. To what group, C, does Eg break down to in 

each of these cases? The answer is different depending upon whether n = 4 or 

n 2 5. From the forms of the matrices for case I and case II it is clear that I: 



must be at least as large as* 

SU(3)c x~Su(2)~ x SU(Z)R x U(l)g~ x U(l)g~ . We can determine 

whether this is indeed the full C by counting the number of massless E6 

gauge bosons** . To do this we need to know how the 78 of Eg transforms 

under U,. The SU(3), x ~U(~)LX U(~)~LXU(~)~RXU(~)~R 

decomposition fo the 78 is : 

7s =(S,l,O,O,O) + (1,3,0,0,0) + 3 (l,l,O,O,O) + [(1,1,0,2,0) 

+ (1,2,3,0,0) + (1,1,0,1,3) +(I,l,O,-1,3) + (3,2,-1,-1,-l) 

+ (3,2,-1,1,-l) + (3,2,-1,0,2) + (3,1,2,-1,-l) + (3,1,2,1,-l) 

+ (3,1,2,0,2) + camp. conj.] 

In case I, under U,, this transforms into 

(S,l,O,O,O) + (1,3,0,0,0) + 3~(1,1,0,0,0) + [ (1,1,0,2,0) 
+ a3(1,2,3,0,0) + a3(1,1,0,1,3) +a3(1,1,0,-1,3) + a-2(3,2,-1,-1,-1) 

+ a-2(3,2,-1,1,-1) + a(3,2,-1,0,2) + a(3,1,2,-1,-l) + a(3,1,2,1,-1) 

t a4(3,1,2,0,2)+ camp. conj.] 

thus, if n 2 5, there are 16 massless gauge bosons and X is thus 

SU(3), x Sum x SU(2)R x U(l)8L x U(1)8~. A similar reSUlt iS tIUe 

for case 11 for n 2 5 With Sum replacing SU(2)R. If n = 4, then there are 

22 massless gauge bosons in both cases I and II. For n = 4,x is 

su(4), X su(2)LX su(2)RXu(1)35 in case 1 (u(l)35 appears in 

E,@U(6) x SU(2)R where SU(6)zCXJ(4), x sum x U(l)35), and 

*This is the group in case 1. In case II it is 
SU(3), x Sum x SU(2)Rl x U(l)& x U(1)8~1 where SU(2)R and 
SU(2)r differ only through exchange of a multiplet of weak hypercharge 
2/3 with one of hypercharge -413 and a multiplet of hypercharge 2 with one 
of hypercharge 0 in the 27. They give rise to phenomenologically equivalent 
left-right symmetric embeddings. 
**The method of Dynkin weights [12,14] is more powerful than that 
presented here and leads to the same conclusions. 
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Sum replaces SU(2)R in case II. If a3 = 1 (so that xl,??-l, and F-1 are 

all in the spectrum), then 

ra 1 ra 1 
Ug=lx I a lx I a I 

L aJL al 

and the unbroken group 1 is SU(3), x Sum x SU(3)R. In the analysis of 

Dine et al [ 131 this is an unacceptable choice for C since it leads to a value for 

siG(C&) that is too large. 

In case I, the only other member of the incomplete multiplet that is in 

the spectrum beside xl and z-1 is the neutral singlet ?o. The remaining 

terms that may be in the superpotential which couple x1, E-1 and Fo to 

fermion bilinears are (along with the mass terms that they may give rise to): 

CID& + eLeRC mass term (1) 

C-lE&;l + %Eo mass term (2) 

KmH-do --f 9pR” mass term (3) 

AlB-1Fo --f ELERC and NLNRC mass terms (4) 

BmlFoiil + NLFO mass term (5) 

APO& + N+Fo mass term (6) 

Note that term (1) gives a mass to the e and term (4) gives a mass to the 

E and that there is no mixing at tree level between the e and the E. Similarly, 

the d and the D do not mix at tree level. (Note that there may be B-t?$xt and 

Al?@-1 terns also.) 

The Yukawa couplings of some of these terms are related since c is 

larger than SU(3), x Sum x U(l)& x u(1)3R x U(1)8~. For example, 

in case I, the couplings of B-IF&~ and AlFo%-l are equal since both 

(Al, B-1) and (xl,%-,) form SU(2) R doublets. Similarly, the couplings of 

C-1D2yB-1 and C_1E&1 are equal. Thus, the presence of a mass for the 
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electron requires a Dirac mass for the neutrino. A discrete symmetry 

banishing such a neutrino mass does likewise to the electron’s mass. A 

similar result holds in case II. 

We note that the Gell-Mann-Ramond-Slansky mechanism [15] for 

giving the neutrino a small mass will not work in the present context. 

However, in the more general case in which we allow both the scalar partners 

of the left-handed doublet neutrino and those of the neutral singlet fermions 

(the Eo and Fo) to acquire vacuum values, a variant of this mechanism can 

possibly work. The neutral fermion mass matrix will then involve some of 

the gauginos of C. In the model of case I, for example, if we allow 

<E~>~~~larfO then the neutral mass matrix is a 6x6 matrix (ignoring family 

indices) involving VL, NL, NRC, Eo, To and the gaugino (for example, the 

gaugino corresponding to the unbroken diagonal generator TIN of 

SU@)N,where SU(;?)N is located in the lower 2 x 2 block of SU(3)R and thus 

commutes with weak hypercharge). This matrix yields only small and large 

eigenvalues (compared to M,, assuming that the singlet vacuum values are 

large) if &>>KEo>~,.~~> M,. In this case E and e mixing now occurs, as 

does d and D mixing. For a reasonably acceptable maximum value for the 

neutrino mass (lo-100 GeV) we require that &>/<E~>~,-~~lOlo or 

larger. For CEO> scalar/Mw=lOO, this would require that <&0>=1014 GeV. 

Such large values were ruled out by Dine et a1[13]; however, Barr [16] has 

recently shown that these values may be permissable. Other models might 

fare better, since the example we just presented requires a rather unnatural 

fine tuning to achieve <?&0>/<Eo>~~,j~lO1o. 

Up to this point we have assumed thatG is abelian and thus that c is 

rank 6 [7]. Let us now assume that E may be non-abelian (and thus that c 
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may be rank 5). In this case, in the sU(3), x sU(3)L x sU(3)R basis, the 

matrix US takes the form 

ra 1 rp 1 
U,=lx I a I x I I 

L a-2 J L V, J 

with V, a 2 x 2 matrix such that det(Vg) = l.t-1. This is the most general form 

for a non-abelian ?? (other values for Ug would break weak hypercharge). 

Let us examine the decomposition of the 27 under 

Eg 3 su(3), X sum X sum X u(1)& X U(l)g~: 

27 = Am1(1,2,2,-1,l) + B1(1,2,1,-1, -2) + Co(1,1,2,2,1) 

+ D2W,LW) + E1/3(3,2,1,1,0) + F-2/3(3,1,1,-2,0) 

+ G&1,2,0,-1) + %&1,1,0,2) 

To do our analysis we need to know that El/3 is [u,d]h H-413 is URC, and 

that G2,3 contains dRe (and DRY). If z is non-abelian then V, completely 

breaks sU(2)N and thus A-1 (and also Co) is broken up into two fields (which 

are mixed by Vs.. The up quark mass matrix comes from ElnH-~3’iil; and 

thus the invariance of%1 under U, requires that u = a. In order to give the 

down quark a mass we must require that a linear combination of the 

components of x-1 (call them Al and Al corresponding to TIN = +l 

respectively) be invariant under U,. We write this linear combination as 

p hl + q ~-1. Then, under Ug: 

rhl I [A1 1 
(p,q) LA1 J+ a-l(p,q)Vg LA-1 1 
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~Thus, the fixed vector (p. q) must satisfy the eigenvalue 

condition (p, q)V, = a (p, q) for all elements of G. If we combine this 

condition with the conditon that V, must be unitary we can completely 

determine V, in terms of a, p and q. We find, 
r a+~gw 5(a-a-2) 1 

vg= I lx[11(1+l~2)1 , 

L <*(a- a-2) dcl2+ a-2 1 

where 5 = p/n. Note that Vg can be written as Vg = a A + a-2 B, where A 

and B depend only on 6. We easily find that, AB =BA = 0, 

A2 = (1 + ] g 2)A, and B2 = (1 + ] 512)B. (By using this information we 

easily see that if an=1 then V,n=l.) We can now show that all the V, 

commute with each other: If V, = a A + a-2 B and Vg’ = a’ A + a’-2 B, then 

V,V,q= aa’ A2 +a-2 a’-2 B2, which is symmetric in a and a’. Thus, V, and 

Vgt commute, and hence E is necessarily abelian. The eigenvalues of V, are 

a and a-2; thus, we recover the results that we arrived at previously where 

we assumed that ‘d was abelian from the outset . 

Our restriction to models with bl,l=l has allowed us’to obtain 

conditions on 1 and E without reference to G. In fact, our entire discussion 

is also valid for the case bl,l=2, subject to our other assumptions. The reason 

for this is that certainly one of the27representations satisfies Y(x)=y(gx), 

as this is the property of Calabi-Yau spaces mentioned earlier [7]. However, 

the remaining Rmust also satisfy this condition since bl,l does not change 

when we make the transition from K,, to K,,/G (in contrast to the number of 
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27’s), and since it must satisfy Y(x)=Y(gx) in the special case where Ug=l 

for all g. 

The requirement that neither M, nor Md be identically zero at tree 

level is not necessary if it is possible that the zero mass matrix can be 

generated as a calculable correction at one loop order or higher. One 

interpretation of our results might be that (assuming the Higgs to arise via the 

incomplete multiplet mechanism) this situation is a necessity. We are 

currently studying whether or not this can happen in the context of EgXEg’ 

superstring unification. Another interpretation might be that it is necessary 

that the vacuum values of at least some scalar neutrinos be non-zero. As we 

have mentioned above, this might be needed to give the light neutrinos 

acceptable masses in models in which discrete symmeries fail to achieve this 

aim. 
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